
#roedunet2021

Implementation of an email-based alert system for
large-scale system resources

Robert Poenaru

Department of Computational Physics and Information Technology, IFIN-HH
robert.poenaru@nipne.ro 

mailto:robert.poenaru@nipne.ro

1. Motivation

2. Aim

3. Development Stages

4. Conclusions

5. Future work

Table of Contents

Motivation

Within a research department:

Scientific community

• Tackle different problems

• Construct a codebase for a particular
issue

• Develop a scenario for executing
simulations

• Request access to computing
resources (submit jobs)

System administration community

• Manage allocation of the computing
resources for each job

• Monitor executing simulations

• Monitor idling resources

• Keep track of incoming jobs

• Unoptimized simulations lead to:

• Long execution time (will cause delays in the pipeline)

• Low degree of parallelism (cannot take full advantage of
multiple core/threads)

• Excessive memory consumption (limited resource)

Simulations

• Simulation testing + optimization is required

Scientific community

• Allocate jobs (e.g., simulations) to the
computing cluster

• Manage computing nodes (updates, services)

• Observe unexpected behavior of the running
simulations

• Check idling resources for potential issues

Resource management + monitoring

• Keeping track of all these aspects 24/7
is very challenging

Sysadmin community

• Create a service which:

1. ⚙ Monitor multiple computing nodes/clusters (system
resources, executing services, etc.)

2. ⚠ Identify potential issues within the resources

3. ✉ Inform the sysadmin in realtime on the occurring
issue(s) - via e-mail

Project Goals

Alert system

General workflow
Alert system

&RPSXWLQJ�5HVRXUFHV

5XQQLQJ�
UHVRXUFHV

,GOH��
UHVRXUFHV

DQDO\]H�LVVXH

ILQG
VROXWLRQ

DSSO\�IL[

V\VDGPLQ�WHDP�V�

2Q�VLWH

5HPRWH

8QXVXDO�
EHKDYLRU�GHWHFWLRQ

$OHUW�V\VWHP�ZUDSSHU

• Developed in Python

• Great system compatibility

• Plenty of packages

• Strong development community

• Works with virtual environments

• Improved package management using pipenv

• Built in a modular way

Main features
Alert system

1. Get the incoming log information from its corresponding file(s)

2. Perform analysis on the ingested log data

3. Decides if alert(s) should be sent to the sysadmin

Modules
Alert system

1

Ingest module

2

Log analysis
module

3

Alert
module

• The underlying computing infrastructure must send information
containing its current status

• Each node on the cluster should send system information (e.g.,
CPU usage, RAM usage, network activity, running services) to a
centralized master node

• The alert system runs on the master node

• Information is send as log files, via a log shipper.

Receiving system information

• Developed by Elastic™

• Part of the Elasticsearch stack (ELK)

• Lightweight shipper for logs

• Runs as a service on the system

• Sends logs to (not only) any other node on the network

Log shipper
Filebeat

https://www.elastic.co/what-is/elk-stack

• The master node runs the python alert service

• Module-1 reads the log files that arrive on the master node → sub-module 1a

• Sub-module 1a is able to read every new log entry as it arrives. This is possible
using the watchdog package.

• Watchdog uses event handlers to keep track of any changes in the monitored files

Watching log file(s) for changes
Log monitoring I

https://github.com/gorakhargosh/watchdog

 event_handler = LoggingEventHandler()
 observer = Observer()
 observer.schedule(event_handler, path, recursive=True)
 observer.start()
 try:
 while True:
 /* do something */
 finally:
 observer.stop()
 observer.join()

Module-1

a.Log
ingest

b.Log
parse &

store

• With the incoming log data, it is furthermore stored in memory →
sub-module 1b

• Sub-module 1b is able to parse the data in a proper format:

• Extract only relevant fields → system stat(s)

• Format data in a specific format (e.g., CPU usage should be a
number)

• Store extracted stats in their corresponding array

Log monitoring II
Parse & collect data

Module-1

a.Log
ingest

b.Log
parse &

store

• Configuration setup of the alert system:

• Set thresholds for each system stat

• Thresholds indicate normal / unusual system behavior

• Get an averaged value for a system stat (over a fixed time
interval → cycle_time)

• Compare every averaged stat with its corresponding
threshold → decides behavior of the system

Log analysis
2

Log analysis
module

&38

&38�XVDJH

����
�����
�����
�����
����
�����
�����
�����
�����
�����

��

7+5(6+2/'6

��

XQXVXDO�

%(+$9,25

QRUPDO

• Module 3 is triggered only if unusual behavior is
detected by module 2.

• Sub-module 3a creates attachments:

1. Graphical representations with the
evolution of the system stats over a
period of time

2. .csv files with containing the system
stats

2. Sub-module 3b uses smtplib and ssl modules
to establish connection with an SMTP server
(e.g., gmail)

3. Sub-module 3c prepares the actual e-mail that
will be sent to the sysadmin team

4. Sub-module 3d finally sends the email securely.

Alert via email ✉

Structure of module 3

3

3a.create
attachments

3b.establish
SSL

connection

3c.create e-
mail content

3d.send e-
mail

with smtplib.SMTP_SSL("smtp.gmail.com",
 PORT, context=CONTEXT) as mail_server:
 time_stamp = str(datetime.utcnow())[0:19]
 # log-in stage
 try:
 mail_server.login(ROOT_EMAIL, UNICORN_ID)
 except Exception as exc:
 ...
 else:
 ...
 # sending stage
 try:
 mail_server.sendmail(ROOT_EMAIL,
 email_address, final_alert)
 except Exception as exc:
 ...
 else:
 ...

Overview
Alert via email ✉

XQXVXDO�

%(+$9,25

QRUPDO &RQWLQXH�PRQLWRULQJ
WKH�ORJ�ILOHV

$OHUW�WKH�V\VDGPLQ
WHDP

&UHDWH�DWWDFKPHQWV�❦

0RGXOH��

(VWDEOLVK�66/�FRQQHFWLRQ�ZLWK
VPWS�VHUYHU�ᔠ

&UHDWH�ILQDO�H�PDLO

♯��
6HQG�H�PDLO�WR�V\VDGPLQ�WHDP

• Using python, a service for alerting the system administration
team within a research department was implemented, consisting
of three modules

• Using Filebeat, the system stats were shipped to a master node,
on which the python service runs

• Using watchdog, logs are constantly monitored for incoming
data

• The three modules allow for collecting, parsing, analyzing data

• In case of unusual behavior (avg > threshold) the module-3 deals
with alerting the sysadmin team via emails

Conclusions

• Support other email services, other than gmail

• Add support for sending timed emails

• Implement a module that is able to predict the behavior of a node
based on the existing analyzed data (ML integration)

Future work

Thank you for your attention!

✉

basavyr

robert.poenaru@nipne.ro

mailto:robert.poenaru@nipne.ro

