Automatic Control and Industrial Informatics Department
Faculty of Automatic Control and Computers

Improving the security of a webservice: best practices
and attack simulations

N v A W N~

Table of content

. Abstract & Introduction
. Objectives

Related work
Security methods
Experimental results

Conclusions

Abstract & Introduction

* Most of the nowadays applications are client-server based
* Main target: expose a webservice from a low-level programming language

* Focus on best practices and security methods

Objectives

. Developing a webservice using C++
Gradually improve the security of the webservice

1. Check internal and external dependencies
2. Automate the management of resources

3. Encrypt the communication between client and server
. Analyze all data from empirical approach

Generate a series of conclusions

Related work

* Developed webservice:
* Armhf architecture
* Raspberry PI
 HTU21D humidity and temperature sensor
* Get all data over 12C interface

F =Y
REQUEST
CLIENT i WEBSERVICE
RESPONSE
\
b

J
4

12C interface
Data aquisition

o&g

LLLRL!
HTU21D

Fig. 2. Physical systems — server and client

Fig. 1. Data flow from client to server

Security methods

Checking internal and external dependencies
= How to: check for all exploits found up to this point
= National Vulnerability Database NIST
= CVE Numbering Authorities
= Result: Avoiding potential exploits / Accepting and analyzing some possible consequences
= Concrete example - webservice dependencies:
= Restbed: no exploits have been reported
= RapidJSON: no exploits have been reported
= OpenSSL: all versions have vulnerabilities
= Ex: version 3.0.11 — CVE-2022-1434 (related to RC4-MDS5 algortithm)

Security methods

Automating the resource management
= How to: Smart pointers & RAII idiom
= Result: Avoiding memory leaks
= Why is important to avoid memory leaks?
= Such a small and seemingly harmless mistake can represent a significant opportunity for the attacker

= Talk about a concrete example: a webservice which collects data from pressure, temperature and humidity
sensors within an automated pipeline for the automotive industry

Encrypting the communication between client and server
= How to: digital certificates and HTTPS
= Result: encrypted communication - end to end (confidentiality and integrity of data)

Experimental results

Empirical approach for validating the security methods
All tests were conducted into a controlled environment

Everything was done solely to validate some results and discover new possible exploits

Man in the middle attack simulation
* Method: ARP poisoning
* Purpose: to validate the effectiveness of the TLS protocol

MAC address
E4:5F:01:45:D5:4C

D8:3A:DD:19:9B:A8
08:00:27:1E:36:4A

Table 1. Systems used and their MAC addresses

Experimental results

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AOA® s BR@ 2a ¢ »n<«>»PFEooof

ttp && ip.addr == 192.168.100.56
Source Destination Protocol Length Info
2631 30.265727.. 192.168.100,56 192.168.100.72 HTTP/JS.. 836 HTTP/1.1 200 OK , JSON (application/json)
3582 208.90080.. 192.168.100,72 192.168.100.56 HTTP 171 GET /getHtu2lDataTimeseries HTTP/1.1
6062 210.65953.. 192.168.100.56 192.168.100.72 HTTP/JS.. 836 HTTP/1.1 200 OK , JSON (application/json)

» Frame 6062: 836 bytes on wire (6688 bits), 836 bytes captured (6688 bits) on interfac 22 74 65 70 72 61 "tempera ture'":24
- Ethernet II, Src: RaspberryPiT_19:8b: ot Dst: PCSSystemtec_le:36: Q0000 2e 36 31 34 39 .6194992 96542[F,
+ Destination: PCSSystemtec_le:36:4a 22 68 75 69 64 69 "humidit y":47.51

+ Source: RaspberryPiT_19:9b:a8 (d8: 36 33 39 k] 33 63993835 4492}, {"
Type: IPv4 (0x0800) 74 69 6d 22 22 time":"2 024-05-2

» Internet Protocol Version 4, Src: 192.168.100.56, Dst: 192.168.100.72 34 54 32 3a 34 38 4T20:48: 23.760Z"

@ Transmission Control Protocol, Src Port: 3600, Dst Port: 41156, Seq: 1264105, Ack: 14 2c 22 74 65 , "temper ature":2

v [[truncated]1845 Reassembled TCP Segments (1264874 bytes): #3589(1448), #3590(1448), 34 2e 35 31 32 39 4.512199 40185547

[GIFS

\N]

W~ W wWw~
[I

[{s]

M Hypertext Transfer Protocol 2c 22 68 64 4 ,"humidi ty":48.1
MHTTP/1.1 200 OK\r\n 31 39 30 38 36 19098663 33008}, {

Access-Control-Allow-Credentials: true\r\n 22 74 69 65 3a 4 "time":" 2024-05-
Access-Control-Allow-0rigin: *\r\n 32 34 54 30 35 24T20:53 :23.946Z
Cache-Control: no-cache\r\n 22 2c¢ 4 65 70 / ", "tempe rature":
Connection: close\r\n 32 34 30 38 30 24.60880 08880615
Content-Length: 1264649\r\n 32 35 68 6d / 4 25, "humi dity":47
Content-Type: application/json\r\n 2e 36 37 31 37 .6537017 8222656}
User-Agent: RPI-Server/v1.00.09\r\n 2c 7b 69 65 22 : {"time" :"2024-0
\r\n 35 2d 54 30 3a 4 5-24T20: 58:24.09
[HTTP response 1/1] 35 5a 22 65 6d 1 74 57", "tem perature
[Time since request: 1.758728889 seconds] 22 3a 2e 31 39 : ":24.619 49920654
32 39 22 75 6d : : : 297, "hum idity":4

[Request URI: http://192.168.100.56:3600/getHtu2lDataTimeseries] 37 2e 38 30 30 7.638500 21362305
File Data: 1264649 bytes 7d 2c 74 6d 65 : },{"time ":"2024-
- JavaScript Object Notation: application/json 30 35 34 32 31 ; 05-24T21 :03:24.2
- Object 33 34 2c 74 65 1 74 34z","te mperatur
- Member: operation 65 22 34 36 36 e":24.66 23992919
[Path with value: /foperation:getHtu2lDataTimeseries] 39 32 39 22 68 : ; 92189, "h umidity"
[Member with value: operation:getHtu2lDataTimeseries] 3a 39 37 30 : 4 147.,9970 01647949
string value: getHtu2lDataTimeseries 32 7d 7b 74 69 22%,{"ti me":"202

Key: operation

N
[e]

N
= 0

~ W
BN

w
(=]

NN WWWNWN W
NP o0 ~NNNNNO

N

()

e]
o

W W w
W WM WM W
N MNNN®
WO D WD
WO oONR~OO R

@
]
3]

. Frame (836 bytes) = Reassembled TCP (1264874 bytes)

Fig. 3. Man-in-the-middle attack, HTTP protocol, no digital
certificate and TLS disabled

Experimental results

®

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ADACG n BE@ 2 ¢« > n « >N B o o[

Destination Protocol Length Info
.40690... a o 5 a o 5 o 1514 Application
.42280... o o] o o] o 1514 Application
.48184.. o o ; o o ; o 1514 Application
.50834... 1514 Application
.50840... a o 5 a o 5 o 1514 Application
.54377... a o 5 a o 5 o 1514 Application
.61530... o o] o o] o 1514 Application
105.. .61532... .168.100.56 192.168.1600.72 TLSv1. 1514 Application Data

Frame 10576: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on int¢ ' N 79
Ethernet II, Src: RaspberryPiT_19:9b; 8), Dst: PCSSystemtec_1le:36:: 4b
» Destination: PCSSystemtec_le:36:4a g 42
» Source: RaspberryPiT_19:9b:a8 (d8:3a:dd oD c8
Type: IPv4 (0x0800) 6e
Internet Protocol Version 4, Src: 192.168.100.56, Dst: 192.168.100.72 db
Transmission Control Protocol, Src Port: 4334, Dst Por 49776, Seq: 1051795, Ack: 72! € 1b
[25 Reassembled TCP Segments (16406 bytes): #10564(294), #10565(1448), #10595(1448), i € 33

1 c =i 48 2cC
-|TLSv1.3 Reco Application Data Protocol: Applica Bc

Opaque Type pp 16 8f

Version: TLS 1.2 (0x0303) o 13 e2

Length: 16401 AT 86

Encrypted Application Data [truncated]: 85c4ee267379d62900bad405aeafc64eae863cf6co C 9a 50

g 37 bb

al 5c¢C

40 09

1t as

a3 97

cd 6e

9d 3d

fd 17

ea 45

b9 27 bs

Frame (1514 bytes) = Reassembled TCP (16406 bytes)
® E Payload is encrypted application data (tls.app_data), 16,401 bytes Packets: 11212 - Displayed: 74 (0.7%) Profile: Default

Fig. 4. Man-in-the-middle attack, TLS protocol enabled,
digital certificate on server side

Conclusions

* Combined a theoretical and empirical approach to improve the security of a webservice

= Proposed a series of good practices to be applied for avoiding memory leaks

= Qur personal thoughts:
= Digital certificates play an important role in mitigating MITM attacks

= However, we did not find any scientific research which validates that this method provides 100% protection
against MITM

= The presence of digital certificates and TLS protocol do not guarantee that such an attack cannot be
successfully executed

Thank you for your time and attention!

	Slide 1: Improving the security of a webservice: best practices and attack simulations
	Slide 2: Table of content
	Slide 3: Abstract & Introduction
	Slide 4: Objectives
	Slide 5: Related work
	Slide 6: Security methods
	Slide 7: Security methods
	Slide 8: Experimental results
	Slide 9: Experimental results
	Slide 10: Experimental results
	Slide 11: Conclusions
	Slide 12

