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Introduction

- Motivation -

Trimming large datasets:
@ Slow web backends that deal with live data aquisition
@ ML sampling of training data
@ anomaly detection /filtering
Requirements:
@ Reduce the number of rows as much as possible
@ Keep as much information as possible

Result: best compromise between size and retained information
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- Concepts -

Model:
@ Information function: what we value

@ Trimming procedure: order of discarding
Dataset:
@ Classes: include data with the same meaning (table columns)
@ Entries: one piece of data (table cell)
e Timestamps: mark the order (and frequency) of rows
@ Events: data captured at the same time, hence placed in the
same row (table row = timestamp + event)
@ Correlations: common patterns in entries — cross-referencing
Time symmetry: attention factor
@ neutral: older and newer events are equally important
@ elevated: older events are less important than newer events
@ low: older events are more important than newer events
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- Assumptions -

Information function:
@ non-negative value for any amount of data

@ adding events does not decrease the information;
trimming events does not increase the information

@ trimming the lowest information event results in minimum
decrease the dataset information

Conclusion: total information is a sum-like function of event
information

Cross-referencing: binary match (identical/different)
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- Strategies -

Combinatorial subset optimization problem:

@ exact solution is impractically slow for large datasets

@ practical solution: greedy algorithms and derived refinements
Greedy algorithm accelerators: trimming strategy:

@ event trimming: discards the event with lowest information in
each iteration, then recalculates the contributions; slow; good
memory

@ block trimming: discards some of the events with low
information in each iteration, then recalculates the
contributions; faster; minimal memory loss

@ total trimming: discards all events with the lowest information
in one pass; very fast; no memory
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Models

- The Independent Event Models -

@ Trimming one or multiple events does not change the order of
the information contribution of the other events

@ Due to introduction of procedures, information contribution of
each event =1

@ Block trimming strategy is all it takes
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Models

- The Event Statistical Model -

o

Based on Shannon information applied to entire events

Assumes that the data is ergodic (all the events are equally
important), so the timestamp column is ignored by the
information function

Ergodicity can be broken by the procedure

Block trimming can be used without introducing errors
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Models

- The Class Statistical Model -

Shannon information is applied at entry (table cell) level

o Cross-referencing weights are introduced to Shannon
information to emphasize entries in one class (column)
appearing also in other classes

@ Event information is a sum of entry contributions

@ A block trimming strategy is developed based on KMeans
clustering low information contribution events in blocks and
eliminating them in one iteration

@ Timestamp information still not captured by the information
function
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Models

- The ldeal perception Model -

@ Development of the Class Statistical Model with additional
weights to account for timestamp distribution of repeated
appearences of the same value in a class
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Models

- The ldeal perception Model -

@ Development of the Class Statistical Model with additional
weights to account for timestamp distribution of repeated
appearences of the same value in a class

@ Timestamp distribution weights are calculated to mimic
human perception (forgetting, memory reinforcement by
repetition)
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Conclusions

Conclusions

@ Trimming should capture the relevant information in the
dataset via a model.

@ Compromise between the amount of trimming and the
amount of information loss should be achieved.

@ Information models structure should mimic the data
consumption purpose.

@ A computation speed-up can be obtained by using various
trimming strategies with the greedy algorithm.
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Questions?
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