

01 Introduction

Environment, Methodology

02 Related Work

Self-Play Reinforcement Learning, Vision-Language Models in RL, Semantic Priors in Policy Learning

03 Results

Learning Performance, Self-Play ELOIntegration

04 Future Work

Reward Dynamics, Observation modalities, Generalization

Environment

Full Environment

Tank

Obstacles

RayCast

Spawn Point

Tank Camera

Baseline	Raycast	Semantic Observation	
Own Position	Own Position	Own Position	
Enemy Position	Raycast Vectors	VLM Embeddings 512	
Health	Health	Health	
Shooting Recharge	Shooting Recharge	Shooting Recharge	
	2M Steps		
	PPO		
	Self Play		1

Self-Play RL (why it matters)

What it is & why it matters

Self-play has delivered superhuman performance in competitive domains (AlphaGo/AlphaStar/Op enAl Five). Challenge: carrying that success into visually rich 3D remains hard

Common mechanics

PPO self-play with ELO tracking, snapshot pools, opponent rotation; concrete schedule: save every 50k steps, swap 10k, team swap 200k, latest-model ratio 0.5; initial ELO 1200.

Known pitfalls in 3D

In 3D, self-play can overfit or cycle without careful reward design and observation choices.

Gap my work aims to target

Prior self-play excels in abstract games; your novelty is testing frozen semantic priors inside competitive self-play.

Evidence preview

With the same budget, semantic agents achieve higher ELO despite slower reward; raycasts sit in between; baseline peaks in reward but ELO collapses

Vision-Language Models in RL

What VLMs bring

Pretrained semantic representations (e.g., CLIP/BLIP-2) encode objects & relations; enable zero-shot transfer and better perception.

Where they've been used

My paper summarizes single-agent uses (navigation/manipulatio n) where VLMs speed learning; competitive MARL is underexplored

Why this matters for RL

Literature suggests
semantic features supply
meaningful structure
(objects/relations) beyond
raw pixels—useful for
exploration and decisionmaking under partial
observability

Gap

Integration of VLMderived semantic priors into competitive multiagent self-play remains unexplored. My work aims to address this gap.

What prior results show

In single-agent environments (e.g., Minecraft, Habitat), VLM-based features have been reported to accelerate learning in complex settings

Semantic Priors in Policy Learning

What they are & why they matter

High-level, semantic representations (object identities/relations) can accelerate RL compared to raw pixels, offering more meaningful sensory structure under partial observability.

Representative approaches

Object-centric features for Atari generalization (Anand et al.); ResNet encoders with actor–critic for target-driven navigation (Zhu et al.); object recognition for improved search (Ye et al.); visual-semantic graphs via GNNs for navigation (Yang et al.).

Reported benefits

Across these studies, semantic features outperform pixel-only learning by injecting structure that guides exploration and decisionmaking.

Limits/gaps highlighted

Prior literature summarized here is largely single-agent (navigation/manipulation); the use of semantic priors within competitive multi-agent self-play is noted as underexplored.

Why this strand matters for RL

The thread of work argues that semantic priors reduce brittleness of pixel-based policies by encoding object/context knowledge—useful when rewards are sparse and observations are high-dimensional.

Learning Performance (2M steps)

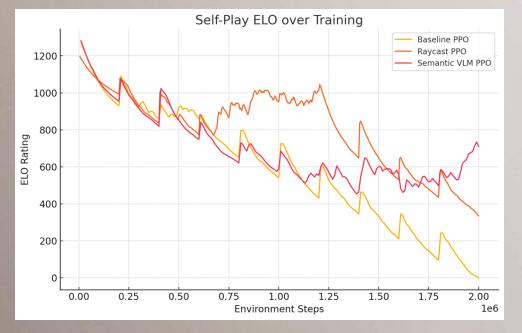
Context: 1v1 Unity tanks, PPO self-play, fixed **2M steps**; three observation modalities (Baseline numeric, Raycasts, Semantic BLIP-2).

	Mean Reward	Final Reward	Notes
Baseline	13.53	19.63	Always attack do not explore
Raycast	6.79	8.33	Explore and attack once see the target
Semantic (VLM)	4.49	1.83	Only Explore didn't learn to attack

Overall: All three configurations **improve reward over time**; learning dynamics differ (fast vs moderate vs exploratory).

Self-Play ELO (2M steps)

	ELO	Notes
Baseline	-0.45	collapsed from 1273 → -0.45
Raycast	334.96	moderate/stabi lized
Semantic (VLM)	709.66	highest ELO



Where to go from here?

Rewards

- Experiment using rewards that are either less frequent or more frequent.
- Test rewards that focus more on tactical elements to help the tank accomplish a specific goal.

Semantics & Raycast

- Try using a larger VLM
- Test a fine-tuned VLM
- Explore additional prompt engineering techniques
- Attempt to generate strategies based on image analysis
- Combine VLM with Raycast for experimentation

Generalization

- Try out the three distinct levels offered
- Utilize Procedural Content Generation to vary the obstacles

Implications of Frozen VLM

