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Self-Play RL (why it matters

What it is & why it matters Common mechanics Known pitfalls in 3D
Self-play has delivered PPO self-play with ELO In 3D, self-play can
superhuman tracking, snapshot overfit or cycle without
performance in pools, opponent careful reward design
competitive domains rotation; concrete and observation
(AlphaGo/AlphaStar/Op schedule: save every choices.
enAl Five). Challenge: 50k steps, swap 10k,
carrying that success team swap 200k, latest-
into visually rich 3D model ratio 0.5; initial

remains hard ELO 1200.
ap my work aims to targe Evidence preview
Prior self-play excels in With the same budget,
abstract games; your semantic agents
novelty is testing frozen achieve higher ELO
semantic priors inside despite slower reward;
competitive self-play. raycasts sit in between;

baseline peaks in
reward but ELO
collapses
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Vision-Language Models in RL

What VLMs bring

Pretrained semantic
representations (e.g.,
CLIP/BLIP-2) encode

objects & relations;

enable zero-shot
transfer and better

Where they've been used

My paper summarizes
single-agent uses
(navigation/manipulatio
n) where VLMs speed
learning; competitive
MARL is underexplored

Why this matters for RL

Literature suggests
semantic features supply
meaningful structure
(objects/relations) beyond
raw pixels—useful for
exploration and decision-

perception. making under partial

observability

Gap What prior results show

Integration of VLM-
derived semantic priors
into competitive multi-
agent self-play remains
unexplored. My work have been reported to
aims to address this accelerate learning in
gap. complex settings

In single-agent
environments (e.g.,
Minecraft, Habitat),

VLM-based features
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Semantic Priors in Policy Learning

What they are & why they matter Representative approaches Reported benefits
High-level, semantic Object-centric features for Across these studies,
representations (object Atari generalization (Anand semantic features
identities/relations) can et al.); ResNet encoders outperform pixel-only
accelerate RL with actor—critic for target- learning by injecting
compared to raw pixels, driven navigation (Zhu et structure that guides
offering more al.); object recognition for exploration and decision-
meaningful sensory improved search (Ye et al.); making.

structure under partial
observability.

visual-semantic graphs via
GNNs for navigation (Yang

et al.).
Limits/gaps highlighted y this strand matters for R
Prior literature The thread of work
summarized here is argues that semantic
largely single-agent priors reduce
(navigation/manipulatio brittleness of pixel-
n); the use of semantic based policies by
priors within encoding object/context
competitive multi-agent knowledge—useful
self-play is noted as when rewards are
underexplored. sparse and

observations are high-
dimensional.
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ontext: 1v1 Unity tanks, PPO self-play, fixed 2M steps;
ee observation modalities (Baseline numeric, Raycasts,
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emantic BLIP-2).
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Mean Reward Final Reward Notes
. Baseline 13.53 19.63 Always attack
do not explore
Raycast 6.79 8.33 Explore and

attack once
see the target

1.83 Only Explore
didn’t learn to
attack

-3 Semantic (VLM)
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?"l?arning dynamics differ (fast vs moderate vs
atory).
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ELO Notes

Baseline -0.45 collapsed from
1273 — -0.45

Raycast 334.96 moderate/stabi
lized

highest ELO

Self-Play ELO over Training

Baseline PPO
—— Raycast PPO

600

ELO Rating

—— Semantic VLM PPO

Environment Steps

0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Where to go from here?

Rewards

» Experiment using rewards that are either less frequent or more frequent.
« Test rewards that focus more on tactical elements to help the tank accomplish a specific goal.

Semantics & Raycast Wi 2

* Tryusing a larger VLM

» Test a fine-tuned VLM

« Explore additional prompt engineering techniques

« Attempt to generate strategies based on image analysis
« Combine VLM with Raycast for experimentation

Generalization

» Try out the three distinct levels offered
« Utilize Procedural Content Generation to vary the obstacles
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