g™ FACULTATEA DE Computer Science
AUTOMATICA & ERLIES
N/» CALCULATOARE

EVALUATING LLMS FOR AUTOMATED
REQUIREMENT AND TEST CASE GENERATION IN
RAILWAY SIGNALING SYSTEMS

lonut-Gabriel Otelea Bogdan Pintea
Razvan Victor Rughinis Valentina Tirsu

IIIIIIIIIIIIIIIIII
A MOLDOVEI

MOTIVATION

e Requirements lists for complex technological products
quickly become large and difficult to navigate.

e Despite tools like IBM DOORS or Polarion ALM,
specialists still spend significant time refining and
validating requirements.

e This manual effort increases development time and
costs, while reducing efficiency and resource availability
for actual product development.

RELATED WORK

e Several studies propose domain-specific languages or other
model transformation approaches to formalize requirements
and automatically derive test cases.

e Systematic reviews show 400+ studies using NLP for
requirements processing, but only ~15 tools are publicly
available, with limited industry adoption.

RESEARCH GAP

e There is a lack of systematic evaluations of LLM
performance in safety-critical, regulated domains.

e Current work focuses on isolated tools or narrow case
studies, without broad applicability.

e Without reliable benchmarks across key dimensions
(completeness, correctness, consistency, traceability),

both academic progress and industrial adoption are
hindered.

OBJECTIVES

e First comparative evaluation of multiple state-of-the-art
LLMs (GPT-4, Claude, Gemini) in railway signaling
requirements engineering.

e Benchmark framework grounded in CENELEC standards
and consistent metrics (completeness, correctness,
consistency, traceability).

/////////

RAI LWAY SYSTEMS
ARTIFACTS AND WORKFLOW

e CENELEC EN 50126 / 50128 / 50129 define strict rules for
railway software development to ensure safety and quality.

e V-Model development cycle: every development stage has a
corresponding verification & validation stage.

e Traceability chain: user requirements = system requirements
> design/interface requirements.

Ensured Traceability

—— User Requirements >

| Specification
1 L > Informational
e >
Y
Exam p/ e _ System Architecture _ _ _ _ | _ _ E_“E": o
. 1”7 Loisn Company
schematic of the . .
1
relationship : :
I
between a part of - Reguee < gy ProductTests
) 1 - f Sﬁaciﬁcﬂti on Specification
the railway system |
1 1
software products Lo l—H
specific artifacts | | |
1 1
Software Design Interface Design Component Tests
: ‘> Description Description e Specification
:
1
1

i
-

I 2 2%
/////%/////////4
//;/Z/ 7

e Expand generic customer requirements.

e Evaluate model detection capability when introducing
errors & inconsistencies.

e Generate refined system requirements and derive
corresponding product test cases.

Generates

» User Requirements

Specification

— M System
. LLM "'.{_ Requirements
L Specification

< LM < User Requirements

Specification Sketch

! » Product Tests

Specification

The points of interaction between models and
artifacts of interest

e GPT-4 (OpenAl), Claude Sonnet 4 (Anthropic), Gemini 2.5 Flash
(Google DeepMind/Microsoft).

e Widely used, strong interaction quality, accessible APIs, backed
by trusted companies.

e Open/public LLMs exist, but often lack APIs, require significant
local infrastructure, or deliver weaker results.

e Completeness, Correctness, Consistency, Traceability.

e Checklist applied systematically to outputs from each model
and scoring based on fulfillment of sub-criteria.

EVALUATION CHECKLIST
FORLLM OUTPUTS

Metric

Checklist Item

Completeness

Correctness

Covers all aspects of the source requirement.

Includes relevant conditions and constraints.

Addresses boundary and failure cases.

Provides sufficient detail for implementation or
testing.

Uses domain-specific terms accurately (e.g., rail-
way signaling).

Describes technically valid and logical behavior.

Avoids internal contradictions or factual errors.

Contains verifiable acceptance criteria or test
steps.

Consistency

Traceability

Uses consistent naming and terminology.

Aligns with related requirements and artifacts.

Maintains logical coherence across expansions
or refinements.

Follows defined templates or standards.

System requirements reference their source user
requirement.

Each requirement or test case has a unique
identifier.

Test cases clearly link to the requirements they
verify.

Full trace chain 1s complete and can be verified
and validated.

RESULTS

e Used model-specific APIs with tailored prompts and input
documents for each artifact (requirements, refinements, tests).

e Each run was performed without prior conversation history,
ensuring predictable and unbiased outputs.

%%SER REQUIREMENTS
" SPECIFICATION GENERATION

e Small set of generic requirements for a track surveillance
drone used as input prompt under CENELEC context.

e All models produced structured documents with headers and
chapters (Scope, Purpose, Approval, etc.).

o Gemini: added subchapters but no unique IDs.

o Claude: added IDs (e.g., UR-ENV-001), RAMS impacts, requirement
priorities, SIL, and non-functional requirements.

o GPT-4: concise, but generated additional unique requirements without
being prompted.

7
2=
i

e User Requirements Document refined has been used as input
for the models which were asked to derive technical System
Requirements with defined structure and obligation levels.

o GPT-4: Followed structure but mostly rephrased user requirements, with limited
technical detail.

o Gemini: created requirements with placeholders (TBD values), fragmented user
requirements, little technical depth.

o Claude: generated ~2.5x more requirements, introduced technical decisions (e.g.,
SIL2), imposed strict safety conditions, and referenced standards extensively.

7
2
T

e Created a modified System Requirements document with
deliberate errors (duplicate requirements/IDs, nonsensical
values, contradictions, inconsistent units, editorial mistakes).

o GPT-4: Missed duplicate requirements, flagged false conflicts (e.g., LIDAR +
stereo cameras).

o Gemini: Detected duplicates and corrected IDs, but missed editorial/physical
impossibilities (e.g., 195% humidity).
o Claude: Identified all introduced errors (even the ones introduced by itself

before), flagged inconsistencies, and recommended additional safety
requirements to align with CENELEC.

/

o

117 II//’/
/%////

_——

= ‘

CT TESTS SPECIFICATION
GENERATION

e System Requirements have been used as input and the models
have been asked to generate Product Test Specifications (title,
preconditions, steps, evaluation, manual/automated).

e All models linked tests to requirements and followed the
requested structure, but none achieved full 1:1 correlation

between actions and expectations.

o GPT-4: Simplistic steps, limited detail.

o Gemini: More detailed, but less technically rigorous.

o Claude: Most advanced - inferred boundary values from other requirements,
provided concrete limit testing, and added explicit pass/fail criteria.

EVALUATION #1

e Scores: GPT-4-9.5 /16, Claude -13.5 / 16 (best overall),
Gemini -10.0 / 16

e Key findings:

o Completeness: GPT-4 omitted edge cases; Gemini left placeholders; Claude inferred
boundary values across requirements.

o Correctness: GPT-4 valid but sometimes false positives; Gemini missed domain-
specific errors (e.g., 195% humidity); Claude technically rigorous, though occasionally
self-contradictory.

o Consistency: GPT-4 missed duplicates; Gemini uniform but missed editorial issues;
Claude best — detected contradictions, suggested restructuring.

o Traceability: All models maintained it to some degree; Claude strongest (clear links +
explicit pass/fail), GPT-4 sometimes incomplete, Gemini weakened by placeholders.

EVALUATION #2

e Overall comparison:
o GPT-4: concise, fast, but weak in completeness & error detection.
o Gemini: good structure, but struggled with technical correctness.
o Claude: most rigorous — boundary cases + traceability, though not
free from contradictions.

e Failure modes:
o GPT-4: context length limits, overgeneralization.
o Gemini: poor technical grounding, implausible outputs.
o Claude: self-consistency issues across long outputs.

CONCLUSIONS

e LLMs can support generating and maintaining
requirements/test cases in critical domains, but human
oversight is essential.

e Commercial APl costs become prohibitive at industrial scale
and large documents and many users increase expenses.

e Future directions:
o Explore open-source models with trainable weights on secure infrastructure.
o Define robust validation pipelines & monitor model drift.
o Develop best practices for prompt engineering and fine-tuning in safety-critical
contexts.

I //////////Z///
W=
7
ny
7

CONTACT: IONUT.OTELEA@UPB.RO

SPECIAL THANKS TO HITACHI RAIL GTS ROMANIA

HITACHI

Inspire the Next

QUESTIONS WELCOME

