

True Random Number Generation from Very Low Frequency Noise

Matei Barbu

Dumitru-Cristian Trancă

Florin-Alexandru

Stancu

Why?

Cryptographic system should remain secure even if all details about the system, except for the secret key, are publicly known. – Kerckhoffs' principle

Why?

Cryptographic system should remain secure even if all details about the system, except for the secret key, are publicly known. – Kerckhoffs' principle

So, how do we choose a secret?

RANDOM.ORG [Haa25]

Figure 1: Version 1 (with whiskey bottles)

Figure 2: Version 2

Related Work

- A embedded prototyping approach [LL19]
 - Focused on maximizing entropy
 - Non i.i.d. variables
 - Comparison between compressed and uncompressed streams
 - Plots use are misleading
 - Leaked audio noise at acquisition
 - Good results when combining multiple sources

Related Work

- A embedded prototyping approach [LL19]
 - Focused on maximizing entropy
 - Non i.i.d. variables
 - Comparison between compressed and uncompressed streams
 - Plots use are misleading
 - Leaked audio noise at acquisition
 - Good results when combining multiple sources
- A on-chip 180nm approach [Kum+20]
 - Employed hybrid sources of entropy
 - QRNG based on optical phenomena
 - Un compressed radio captures
 - They propose an unconventional arbiter block
 - Important implementation details were left out

Research Objectives

205 AND E NOVAHE UNST

- Reproducible results
- Modular design
- FIPS 140-2 validation

Very Low Frequency Radio

205 AN DE NOVAHE UNST

- 3-30kHz
- Ideally in a Radio Quiet Zone
- Data from abelian.org

The atmospheric noise in VLF band is mainly impulse noise under the background of Gaussian white noise. Gaussian white noise is composed of the superposition of pulses formed by a large number of thunderstorms distributed around the world. Impulse noise is formed by the superposition of lightning electromagnetic pulses near the receiver. LXC22]

Figure 3: Setting up an antenna in Alaska [Stu25]

VLF Characteristics I

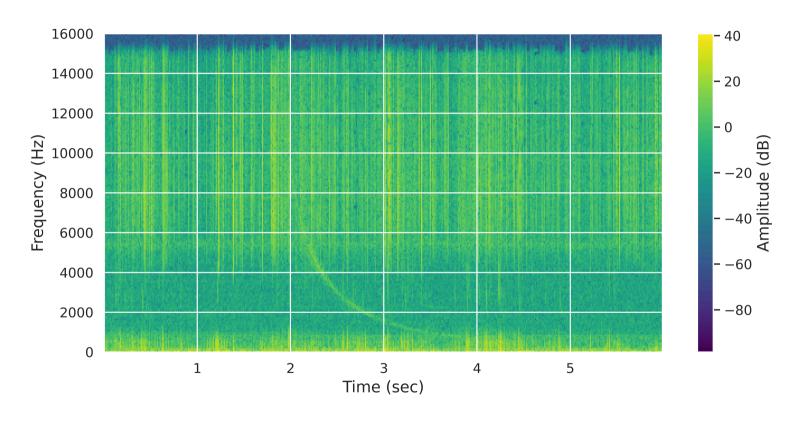


Figure 4: General spectrogram pattern for VLF captures. Whistler portrayed in the center bottom. Lightning events depicted by vertical yellow bars.

VLF Characteristics II

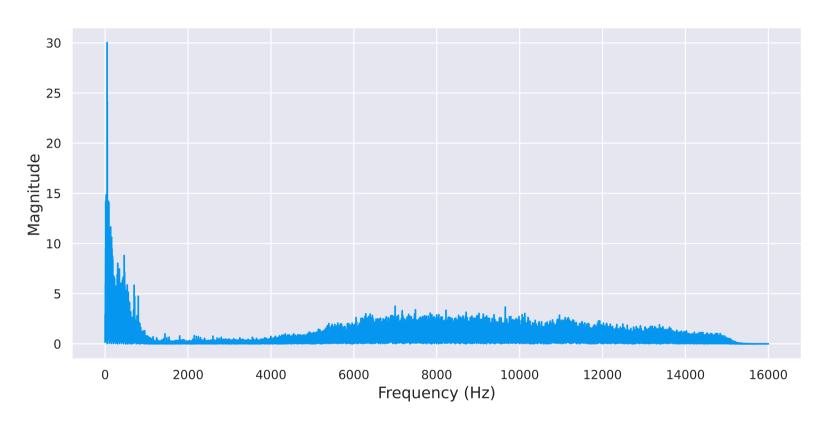


Figure 5: General spectrum pattern for VLF captures.

VLF Characteristics III

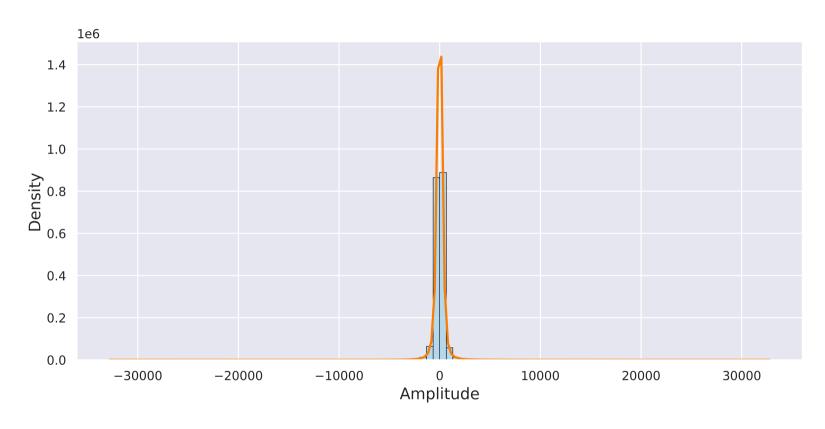


Figure 6: General distribution pattern for VLF captures.

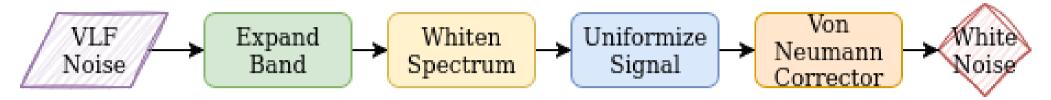


Figure 7: Post-processing pipeline for a VLF entropy source

Our Proposal

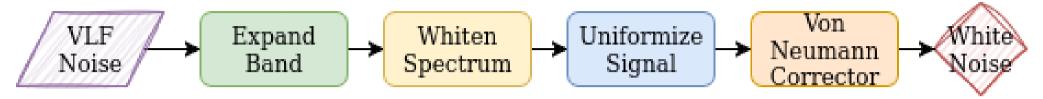
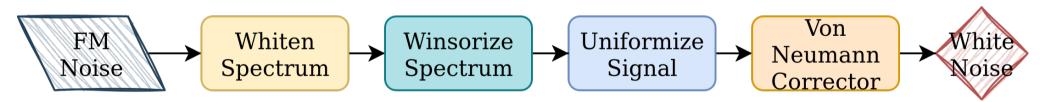
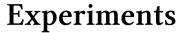
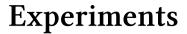


Figure 7: Post-processing pipeline for a VLF entropy source


Figure 8: Post-processing pipeline for a FM entropy source

Host Id	Location	Coordinate
15	Cumiana, NW Italy	44.96N,7.42E
35	Forest, Virginia	37.34385N,79.28818W
41	Heidelberg, Germany	49.443N,8.695E

Table 1: Chosen VLF hosts from abelian.org

Host Id	Location	Coordinate
15	Cumiana, NW Italy	44.96N,7.42E
35	Forest, Virginia	37.34385N,79.28818W
41	Heidelberg, Germany	49.443N,8.695E

Table 1: Chosen VLF hosts from abelian.org

Host Id Entropy (b/B)		Optimum	Arithmetic	Monte Carlo Pi	Serial
		compression			correlation
		reduction (%)	mean	error (%)	coefficient
15	6.151641	23	126.6439	30.24	0.124103
35	4.797632	40	126.6439	14.82	0.493773
41	6.708163	16	127.6324	27.95	0.026920

Note. Chi squared percentage of 0.01% on all sources.

Table 2: Evaluation of VLF entropy sources distributions

Results

High entropy (~8b/B), unbiased, low correlated outputs.

On average, the VLF pipeline failed about 300-400 tests out of ~425000, resulting in an 0.0008 error rate. Which is comparable to the p=0.001 threshold within the SP800 STS suite.

High entropy (~8b/B), unbiased, low correlated outputs.

On average, the VLF pipeline failed about 300-400 tests out of ~425000, resulting in an 0.0008 error rate. Which is comparable to the p=0.001 threshold within the SP800 STS suite.

Host Id	Passed	Failed	Weak	Percentage
15	100	11	3	87%
35	101	10	3	88%
41	92	12	10	80%

Table 3: Dieharder results for our TRNG pipeline on VLF sources

Comments

- Von Neumann corrector is the "weak link" in the chain
 - output bitrate $\approx 25\%$ input bit rate
 - too generic
 - causes some dieharder tests to fail
- Noise up to 4kHz is discarded
- Multiple FFTs on blocks of different sizes

Further Improvements

- Optimize parameters
 - Data representation size
 - Sample rate
 - Block sizes
- Replace algorithms with more performative ones
 - E.g. Von Neumann corrector with a cryptographic hash function
 - Reduce operations on spectrum
- Dynamically determine the shape of the Gaussian white noise envelope

Further Improvements

- Optimize parameters
 - Data representation size
 - Sample rate
 - Block sizes
- Replace algorithms with more performative ones
 - E.g. Von Neumann corrector with a cryptographic hash function
 - Reduce operations on spectrum
- Dynamically determine the shape of the Gaussian white noise envelope
- Use higher quality VLF sources

Thank you for listening!

- Contact:
 - matei.barbu1905@stud.acs.upb.ro
 - dumitru.tranca@upb.ro
 - florin.stancu@upb.ro

github.com/mateibarbu19/trng-methods

Randomness works well in search sometimes better than humans.

Nassim Nicholas Taleb

Bibliography

- [Haa25] M. Haahr, "RANDOM.ORG: True Random Number Service." Accessed: Jun. 28, 2025. [Online]. Available: https://random.org/
- [LL19] K. Lee and M. Lee, "True random number generator (trng) utilizing fm radio signals for mobile and embedded devices in multi-access edge computing," *Sensors*, vol. 19, no. 19, p. 4130, 2019.
- [Kum+20] D. Kumar, C. D. Jadhav, P. K. Misra, and M. Goswami, "Opto-Radio Noise based True Random Number Generator," in *2020 24th International Symposium on VLSI Design and Test (VDAT)*, 2020, pp. 1–5.
- [LXC22] G. Li, J. Xie, and J. Chu, "Study on the characteristics of VLF atmospheric noise and its influence on the receiving performance," in *2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)*, 2022, pp. 1–5.
- [Stu25] R. Sturtz, "Researchers preserve and release trove of public, low-frequency radio wave data." Accessed: Sep. 16, 2025. [Online]. Available: https://news.ucdenver.edu/researchers-preserve-and-release-trove-of-public-low-frequency-radio-wave-data/
- [Gu+22] X. Gu *et al.*, "First Results of the Wave Measurements by the WHU VLF Wave Detection System at the Chinese Great Wall Station in Antarctica," *Journal of Geophysical Research: Space Physics*, vol. 127, p. , 2022, doi: 10.1029/2022JA030784.

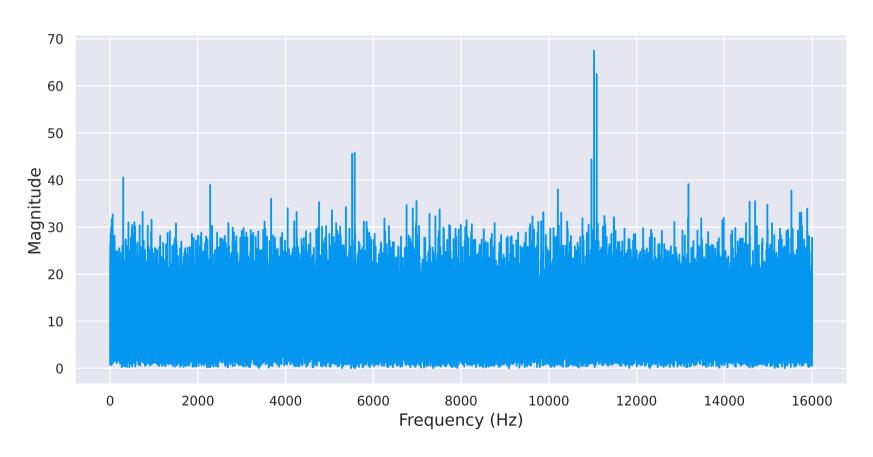


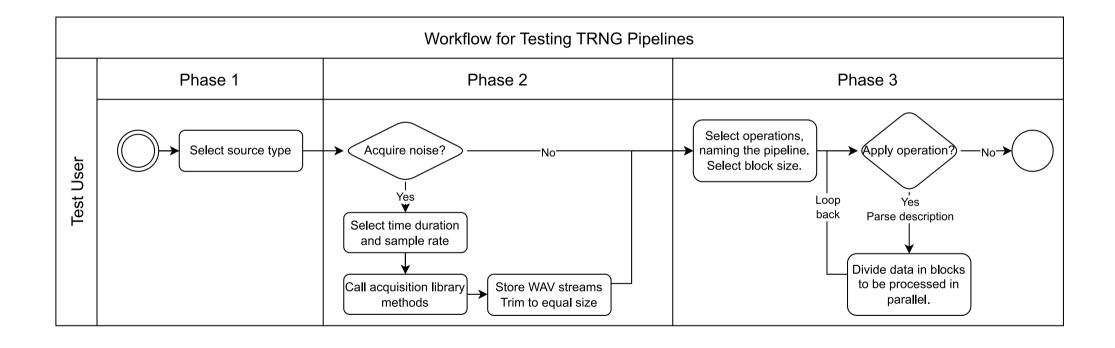
Figure 11: General spectrum pattern for an FM source

Frequency (MHz)		Optimum	Arithmetic	Monte Carlo Pi error (%)	Serial
	Entropy (b/B)	compression	mean		correlation
		reduction (%)			coefficient
80	7.300621	8	127.1270	21.81	0.015797
160	7.473322	6	129.8854	21.42	0.008358
230	7.343521	8	127.7567	21.70	0.013876

Note. Chi squared percentage of 0.01% on all sources.

Table 4: Evaluation of FM entropy sources distributions

FM as an Entropy Source


Frequency (MHz)	Monobit	Poker	Runs	Long Run	Continuous run	Total
80	3	1	8	9	0	20
160	5	2	5	4	0	16
230	1	1	3	7	0	12

Note. Mesured with rngtest.

Table 5: Failed FIPS 140-2 tests out of 23024 for the FM pipeline

Software flow

Algorithms

Algorithm 1: Expand Band

- 1 spectrum \leftarrow FFT(data)
- 2 band_spectrum ← spectrum[start:end]
- 3 factor $\leftarrow \frac{\text{spectrum.size}}{\text{end-start}}$
- 4 spline_degree ← 5
- 5 enlarged_spectrum ← ZOOM(band_spectrum, factor, spline_degree)
- 6 adjusted_data ← IFFT(enlarged_spectrum)

Algorithms

Algorithm 2: Quantile Normalization For Uniform Distribution

- 1 $max \leftarrow MAXIMUM(ABS(data))$
- 2 data $\leftarrow \frac{\text{data}}{\text{max}}$
- $3 \text{ ranked_data} \leftarrow \text{RANK(data)}$
- 4 uniform_data $\leftarrow \frac{\text{ranked_data}}{\text{ranked_data.len}}$

More on VLF receivers [Gu+22]

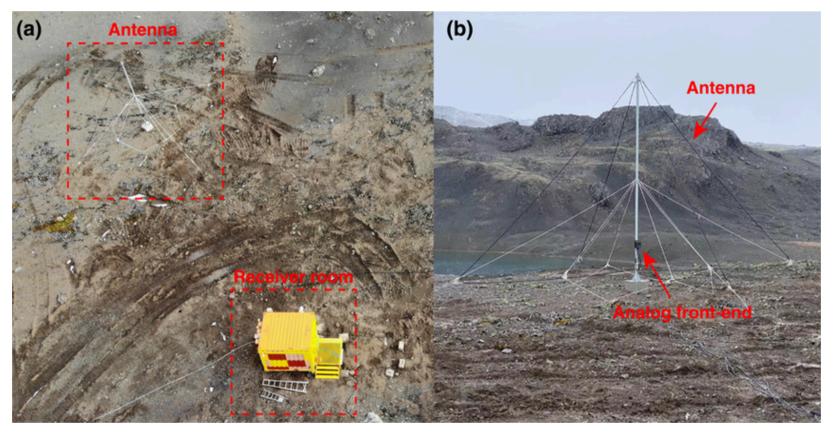


Figure 12: Photos of the Extremely Low Frequency/Very Low Frequency receiving system at the Great Wall station in Antarctica, (a) Layout and (b) antenna structure.