
A Practical Evaluation of
Deployment Strategies

for Services Running
in the Cloud

Vlad-Stefan Dieaconu
National University of Science and
Technology Politehnica Bucharest
vladstefandieaconu@gmail.com

Alexandru Bobe
Ovidius University of Constanta
alexandru.bobe@univ-ovidius.ro

Iosif-Alexandru Selea
CrowdStrike
alexselea@gmail.com

Motivation | Why is this important?

Bad deployments cause
real-world impact01 2025 Google Cloud outage
→ 1.4M users, 50+ services down,
7h recovery

Knight Capital (2012)
→ $440M lost in 45 minutes

Cloud Services are
Everywhere02
94% of companies rely on cloud
services (Edge Delta, 2024)

$675B+ in 2024 for global cloud
market (Gartner)

½ Cloud Incidents03 VOID Database, Aldea 2025
50%+ of failures were directly caused
by deployment-related changes

++ Robust Deployment
Strategies04
Internal Microsoft study:
→ 13% of high-severity outages came
from deployments

Google research:
→ 16% of service failures were caused
by deployments

Contents

Software Deployment
Strategies

Evaluation
Framework

Conclusions

● All-At-Once
● Rolling
● Blue-Green
● Canary
● A/B
● Shadow

● Six key criterias
● Measurement system

● The best deployments
strategy?

All-at-Once / Big-Bang Deployments
Like renovating your entire house while you’re still living in it

● Fast & simple
● High downtime
● Need for a maintenance window
● Rollback = redeploy everything

Possible implementations:
● In-Place: updates existing infrastructure
● Recreate: terminate old & create new

infrastructure

Rolling Deployments
Like renovating your house one room at a time — you can still live there, but some rooms might be unavailable

● Update servers gradually
● Zero/minimal downtime
● Requires backward compatibility
● Rollback = redeploy everything

Possible implementations:
● In-Place Rolling Deployments
● Immutable Deployments

Blue-Green Deployments
Like having an identical twin of your entire house. You live in one, set up the other,

then switch when ready. If something’s wrong, just move back.

● Two identical environments
● Instant switch & rollback
● Ability to test on inactive side
● Higher infra cost

Canary Deployments
Like taste-testing your cooking on one family member before serving dinner to everyone

● Small % of traffic sees new version first
● Real-world testing, low risk
● Instant rollbacks inherited from Blue-Green
● Needs strong observability

A/B Deployments
Like giving half your guests a blue button and half a red button, and seeing which one they click more

● Multiple versions live at once ● Compare user
behavior/metrics

● Focus on optimization,
not just stability

Shadow Deployments (Dark Launches)
Like a dress rehearsal where the actors perform but the audience can’t see it

● Duplicate environment, hidden from users
● Real traffic tested silently
● Expensive & complex to run

Evaluation Framework

● 1. Deployment Speed
○ How fast can you get your code live?

● 2. Downtime
○ Will your users notice anything?

● 3. Risk Level
○ What's the chance everything goes sideways?

● 4. Rollback Speed
○ How quickly can you hit the "undo" button?

● 5. Infrastructure Cost
○ What's this going to cost you?

● 6. Operational Complexity
○ How much of a headache is this to manage?

Reliability

Costs

Simplicity

Sweet Spot
There’s no One-Size-Fits-All

Deployment Strategy

Thanks
Do you have any questions?
vladstefandieaconu@gmail.com

2. Rolling Deployments

1. Big-Bang Deployments

3. Blue-Green
Deployments

4. Canary Deployments

5. A/B Deployments 6. Shadow Deployments

