A Practical Evaluation of

Deployment Strategies
for Services Running

in the Cloud

Vlad-Stefan Dieaconu
National University of Science and
Technology Politehnica Bucharest
vladstefandieaconu@gmail.com

Alexandru Bobe
Ovidius University of Constanta
alexandru.bobe@univ-ovidius.ro

losif-Alexandru Selea
CrowdStrike

alexselea@gmail.com

Motivation | Why is this important?

Bad deployments cause Cloud Services are
real-world impact Everywhere

2025 Google Cloud qutage 94% of companies rely on cloud
— 1.4M users, 50+ services down, services (Edge Delta, 2024)

7h recovery
$675B+ in 2024 for global cloud

Knight Capital (2012) market (Gartner)

— $440M lost in 45 minutes

2 Cloud Incidents ++ Robust Deployment
VOID Database, Aldea 2025 Strategies

50%+ of failures were directly caused

by deployment-related changes Internal Microsoft study:

— 13% of high-severity outages came
from deployments

Google research:

— 16% of service failures were caused
by deployments

Contents

Conclusions

Evaluation
Framework

Software Deployment

Strategies e The best deployments

strategy?

e Six key criterias
e Measurement system

All-At-Once

Rolling
Blue-Green
Canary

A/B
Shadow

All-at-Once / Big-Bang Deployments

Like renovating your entire house while you're still living in it

Fast & simple Before Deployment . During Deployment . After Deployment
High downtime

Need for a maintenance window 8 % 8 % 8 %
Rollback = redeploy everything

Possible implementations: . .
e In-Place: updates existing infrastructure o I
e Recreate: terminate old & create new MEUCIEREILEY . | Maintenance | . New Software

infrastructure Version . Window . Version

Rolling Deployments

Like renovating your house one room at a time — you can still live there, but some rooms might be unavailable

Before Deployment . During Deployment . After Deployment

Update servers gradually 8 % B % 8 %

Zero/minimal downtime
Requires backward compatibility
Rollback = redeploy everything

Possible implementations: . . .

e In-Place Rolling Deployments
e Immutable Deployments

. Previous Software Version

. New Software Version

Blue-Green Deployments

Like having an identical twin of your entire house. You live in one, set up the other,
then switch when ready. If something’s wrong, just move back.

Two identical environments
Instant switch & rollback
Ability to test on inactive side
Higher infra cost

Before Deployment

8 % Cutover

Procedure

After Deployment

£

Blue Green

Green

Blue
- Previous Software Version

. New Software Version

Canary Deployments

Like taste-testing your cooking on one family member before serving dinner to everyone

Before Deployment . During Deployment . After Deployment

100% : (100-canary)% canary% : 100%

Il Previous Software Version

Small % of traffic sees new version first B s
Real-world testing, low risk

Instant rollbacks inherited from Blue-Green

Needs strong observability

A/B Deployments

Like giving half your guests a blue button and half a red button, and seeing which one they click more

Before Deployment During Deployment After Deployment

aa 88 -

B A veraton continuous measurements
[& veriation during deployment
AvsB
e Multiple versions live at once e Compare user e Focus on optimization,
behavior/metrics not just stability

Shadow Deployments (Dark Launches)

Like a dress rehearsal where the actors perform but the audience can'’t see it

e Duplicate environment, hidden from users
e Real traffic tested silently . .

e Expensive & complex to run
% requests
—>

real responses

. sent to clients

y

. mirrored discarded
--------- > R EELRREEr 2

requests responses

- Stable version
responding to client requests

I:I Shadow Version

Evaluation Framework

1. Deployment Speed

O

How fast can you get your code live?

2. Downtime

O

Will your users notice anything?

3. Risk Level

O

What's the chance everything goes sideways?

4. Rollback Speed

O

How quickly can you hit the "undo" button?

5. Infrastructure Cost

O

What's this going to cost you?

6. Operational Complexity

O

How much of a headache is this to manage?

)
& & 4
> é&} V‘be N Q\g
& 3 & R g &
Strategy K 9 < < 9 O
All-at-Once L XL XL XS S XS
Recreate M XL XL XS S S
Rolling M M L S S XS
Immutable M M L S M S
Blue-Green XL M M L L M
Canary S S S M L L
A/B S S S XL XL XL
Shadow S XS XS XL XL XL
Legend: X=Extra, S=Small, M=Medium, L=Large.
Reliability Simplicity
Costs
Sweet Spot

There’s no One-Size-Fits-All
Deployment Strategy

After Deployment

ER

Before Deployment

2

Cutover
Procedure

3. Blue-Green
Deployments

Thanks

Do you have any questions?
vladstefandieaconu@gmail.com

Green Blue

Green

After Deployment

ER

During Deployment

ER

Before Deployment

2

After Deployment

Before Deployment During Deployment ;

88 88 88

Previous Software [
Version .

T
| Maintenance |
Window

New Software
Version

1. Big-Bang Deployments

Before Deployment .

ER2

During Deployment .

ER2

After Deployment

3

2. Rolling Deployments

100%,

(100-canary)%

canary%

100%

Before Deployment

=
?DD

During Deployment

88

——
i

4. Canary Deployments

After Deployment

|8

|
I
continuous measurements

during deployment
AvsB

5. A/B Deployments

88%&“‘1 .

| Sl
responding to client requests

[[] shadow version

real responses
sent to clients

requests

]

responses

6. Shadow Deployments

