A Practical Evaluation of Deployment Strategies for
Services Running in the Cloud

Vlad-Stefan DIEACONU
National University of Science and
Technology Politehnica Bucharest
Bucharest, Romania
vladstefandieaconu @ gmail.com

Abstract—Rapid production rollout of new features, vulnera-
bility patches, and critical bug fixes is essential to maintaining
a market advantage in today’s competitive landscape. However,
this need for speed introduces increased risks, as demonstrated
by the 2025 Google Cloud incident, where a software deployment
containing an undetected bug resulted in cascading service dis-
ruptions in major platforms, including Cloudflare, OpenAl, and
Microsoft 365, requiring over seven hours for complete system
recovery. Given the possible consequences, it becomes mandatory
for organisations to select the most appropriate deployment
strategy when rolling out new software code changes. This paper
provides a comprehensive review of deployment strategies in
modern development lifecycles, analysing both the advantages
and limitations of each deployment strategy, as well as its prac-
tical considerations, such as complexity and cost. Additionally,
we propose a framework for evaluating and comparing different
approaches to deploying to production. Examining each approach
alongside requirements specific to the service itself, such as
urgency and risk tolerance, application complexity, and team
expertise, organisations can select the most suitable deployment
strategy for their use case.

Index Terms—Software deployment, zero-downtime deploy-
ment, canary, blue-green, release management

I. INTRODUCTION

In recent years, due to the growing focus on digitalisation,
individuals, businesses, and society as a whole have grown
increasingly dependent on cloud services, not only for our
entertainment or everyday tasks, but also for critical and time-
sensitive operations.

A recent comparative review of cloud adoption statistics
published by Edge Delta [1] shows us that more than 94%
of companies worldwide are using cloud services in their
day-to-day operations, with global cloud computing market
reaching values of more than $675.4 billion in 2024 [2]. This
widespread adoption means that outages of cloud services can
no longer be considered isolated incidents, but can cascade to
multiple layers and impact millions of users simultaneously.
The outage of Google Cloud from June 2025 [3] demonstrates
how a faulty code change to a specific internal service, the
Service Control, can evolve into a global outage, resulting in
over 1.4 million users affected, disrupting more than 50 online
services, possibly including but not limited to OpenAl, Spotify,

Alexandru Bobe
Ovidius University of Constanta
Constanta, Romania
alexandru.bobe @univ-ovidius.ro

Tosif-Alexandru Selea
CrowdStrike
Bucharest, Romania
alexselea@gmail.com

Snapchat, as found out from an Ookla research [4]. This is not
an isolated case in which errors due to software deployments
resulted in substantial damages, a defective deployment caus-
ing Knight Capital to lose over $440 million in less than 45
minutes [5].

Extensive research conducted by .M. Aldea on a large
number of incidents from Verica Open Incident Database [6]
revealed that over half of these incidents are caused by deploy-
ments of code changes. In contrast, similar studies conducted
by large organizations, such as Microsoft and Google, report
software deployments as the common culprit for a significantly
lower number of failures. An empirical study of high severity
incidents in Microsoft Teams [7] shows that 13% of these
incidents were caused by software rollouts to production, while
a Google research [8] identified approximately 16% of failures
to be related to software deployments. These figures, though
still substantial, provide strong evidence that in leading cloud
organisations, with clear change management policies and
techniques in place, software deployments are responsible for
a smaller amount of production outages.

Given the possible risks and financial losses associated with
impacting clients due to a faulty production deployment, it
becomes critical for organisations of all sizes to establish
adequate strategies for software deployments. This paper aims
to offer a comprehensive analysis of deployment strategies,
providing the necessary knowledge and evaluation framework
needed to choose the adequate approach to rolling out code
changes to production. The selection of an appropriate de-
ployment strategy is further contextualised by broader cloud
migration frameworks that guide how diverse applications can
leverage cloud services for scalability and efficiency [9], [10].
The architectural evolution from monolithic systems to mi-
croservices, aimed at improving resilience and cybersecurity,
directly influences this selection, as it requires more sophis-
ticated and granular roll-out techniques [11]. Furthermore,
effective strategies must incorporate robust models for remote
updates and safe recovery, particularly in distributed environ-
ments such as IoT, to ensure system stability and reliability
[12]. At the foundational level, the security of the underlying
containerization technologies that enable these deployments

is paramount, with user access policies in clustered systems
playing a critical role in mitigating the risks associated with
privilege escalation [13].

The following section will explore the state of the art in
terms of deployment strategies for services running in the
cloud, describing its practical implementations using the avail-
able AWS cloud technologies', such as EC2, Target Groups,
Auto Scaling Groups, and Application Load Balancers. We
will also analyse each rollout procedure’s suitability for dif-
ferent levels of organisations, based on its complexity, speed,
associated costs and more.

II. SOFTWARE DEPLOYMENT STRATEGIES
A. All-At-Once Deployments (Big-Bang Deployments)

As the name suggests, the All-At-Once deployment ap-
proach updates all servers simultaneously. This inevitably
causes downtime because there’s a required interval to drain
existing traffic, deploy new code, and restart services before
accepting production traffic again. Typically, organizations
manage this downtime through scheduled maintenance win-
dows, notifying users in advance of planned service unavail-
ability.

All-At-Once Deployments can be implemented using both
an in-place or a recreate technique. In-place deployments
uses the already existing servers® to which it deploys a new
application version, containing the software code changes.
This offers the solution of a simple architecture, with no need
for the overhead associated with instance management, like
reserving, creating and terminating instances. On the other
hand, recreate deployments start by down scaling the previous
fleet of instances, to prepare a clean environment to which
new instances will be deployed, alongside the code changes.

For a minimal AWS-based architecture supporting the in-
place all-at-once deployments, which simply imply that all
existing servers are updated simultaneously, we can use the
following setup:

o EC2 instances with the application code are deployed
and registered to a Target Group, which is attached to
an Application Load Balancer receiving traffic;

o During a deployment, to avoid sending traffic to a Target
Group with no healthy hosts, the Load Balancer can
be configured to redirect traffic to a maintenance mode
landing page;

« All EC2 instances are stopped, configured to use the new
version containing the code changes we wish to deploy,
and then restarted;

o After passing health checks, the Target Group will have
available targets which are ready to receive traffic, at this
moment the maintenance window can be ended and the
Load Balancer can route all traffic to the Target Group.

For recreate deployments, the approach is similar, with
the main difference being the need to terminate the old

Uhttps://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
Zhttps://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-
integration-continuous-delivery/deployment-methods.html

EC2 instances and start fresh instances. The recommended
approach to doing this is by using an Auto Scaling Group,
which can scale-down old machines, then be configured with
a new launch template to reference the application version
containing the code changes we wish to deploy.

Although a strategy resembling the procedure of local
testing code changes during the development process, All-
At-Once deployments are used not only in development or
staging environments, but also in production, for specific
use-cases in which availability requirements are permissive
enough to accept a maintenance window. It may be used for
deploying breaking changes across multiple services which are
not backwards compatible, requiring a coordinated release of
multiple services at the same time. The operational processes
presented can be automated using a pipeline which directly
interacts with AWS resources, providing organisations with
a low-complexity and cost-effective deployment method that
can easily be automated. It is important to note that this
approach is based on the assumption that software bugs and
potential issues will be caught in an incipient phase, in a
pre-production environment, as rolling back requires to repeat
the complete process again and perform a new deployment,
causing significant downtime in case of an incident.

B. Rolling Deployments

Rolling Deployments maintain the idea of a simple, low-
complexity and cost-effective architecture from the previously
described Big-Bang deployments, while providing a balance
between speed and service availability, by removing the need
for a maintenance window. Rolling Deployments operate on
the assumption that if code changes have been rigorously
tested and are free of critical issues, it is possible to achieve
a zero-downtime deployment by simply updating the existing
machines serving traffic in small incremental phases [14], as
opposed to updating all the servers at the same time, as in the
All-At-Once strategy.

There are two different techniques to achieving Rolling
Deployments, the first one is based on in-place updating of the
existing machines, while the other one is based on immutable
deployments, in which new instances are always deployed.

The operational cost of in-place rolling deployments does
not increase compared to Big-Bang deployments, as rolling
deployments are a standard feature of the Auto Scaling Group,
that can be configured with a rolling policy, stating the
percentage of instances we want to update at a time after
changing its template. Immutable rolling deployments can
be achieved by creating a new Auto Scaling Group for the
application version we wish to deploy, attach it to the Target
Group serving live traffic, and then scale-it up. As instances
start passing health checks, they will start receiving traffic and
we can continue scaling down instances from the previous
Auto Scaling Group.

However, in order to benefit from easier rollbacks, it is
mandatory to have an automated process that would stop
the deployment and revert the Auto Scaling Group’s original
configurations.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/deployment-methods.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/deployment-methods.html

The main disadvantage of Rolling Deployments compared
to Big-Bang deployments is the requirement for the appli-
cation to support two different code versions concurrently
in production. This implies that the new application version
must be fully backward-compatible with the previous one
to prevent disruptions during incremental deployment phases.
Therefore, careful version management and rigorous backward
compatibility testing are essential for successfully applying
this technique.

C. Blue-Green Deployments

The Blue-Green deployment strategy achieves improved
deployment speed and possibility for instant rollbacks by
maintaining two identical, duplicate production environments,
hosting two different versions of the application. This rollout
strategy aims to deploy the newer version to production
with almost zero-downtime using a procedure named cut-
over, as stated in a survey of existing Blue-Green deployment
techniques [15]. The cut-over implies sending traffic from one
environment having the older application version, the Blue, to
the other environment, hosting the newer application version,
which we will call the Green. Rolling back to the previous
version is almost instant, as it only requires cutting-over to the
other environment, which remains at all times scaled up in an
idle state, without receiving traffic. During the next production
deployment, the roles of the two environments are reversed,
Blue becomes the environment having the new application
version, to which we will perform the traffic cutover from the
Green environment. In most use-cases before switching traffic
to the environment containing the code changes we wish to
deploy, tests are executed on that idle environment, to ensure
the application is healthy and ready to receive traffic.

A simple Blue-Green architecture based on AWS resources
consists of:

o Two identical Auto Scaling Groups, configured with the
two different versions of the application, one for the Blue,
and one for the Green;

e Each Auto Scaling Group has a Target Group, which is
attached to the same Application Load Balancer;

o The Application Load Balancer uses listener routes to
switch traffic from one environment to the other;

This deployment technique is preferred due to its capability
for instant traffic switching, allowing for both fast deployments
and rapid rollbacks, while opening the possibility to perform
testing in a production environment before sending real traffic
to the new servers. There is an increased operational complex-
ity associated with automating the deployment process, and an
increased infrastructure-related cost due to having duplicate
environments. There are possibilities to balance the need for
instant rollbacks with the associated costs by scaling down
the inactive environment after deployment finishes and enough
time has passed to confirm the stability and performance of
the new version, which aligns with AWS best practices for
Blue-Green deployments [16]. To optimize resource utilization
and minimize costs, it is recommended to scale-down the
inactive environment after confirming that the new deployment

is stable. Automating this scaling process based on monitoring
metrics and stability checks can significantly reduce overhead
without compromising rollback speed and safety.

D. Canary Deployments

In contrast to the other deployment strategies presented
in this paper, the key difference to Canary Deployments is
the ability of this deployment approach to provide a reliable
mechanism for testing and validating a new application version
under real production traffic before committing to a complete
roll-out at scale. From an architectural point of view, we
can think of canary deployments as an enhanced Blue-Green
deployment strategy, where two Target Groups are used for
traffic management. One Target Group represents the active
side, having the stable, previously tested build version of the
application, and the other Target Group is considered the
canary side, which will be used to expose the new build
of the application, containing the code changes we want to
deploy, to an increasingly larger subset of production traffic.
An Application Load Balancer is used to send traffic in
incremental steps to the canary side, each steps following
a validation procedure, which is usually based on analysing
observability data related to the health and performance of
the application, step which can be automated using a Canary
Analysis Service [17].

A comprehensive study of Continuous Integration and Con-
tinuous Deployment strategies conducted by Avishek Singh
and Vibhakar Mansotra [18] puts canary deployments under
the category of testing strategies, for its effectiveness in
detecting outliers and anomalies of a build version, when
compared to a baseline. Reliable validation through Canary
Deployments demands robust observability tools and practices
that provide comprehensive telemetry and real-time perfor-
mance data from production environments. Without detailed
monitoring data to accurately detect and respond to anomalies,
Canary Deployments cannot fully leverage their benefits and
may become indistinguishable from simpler phased rolling or
Blue-Green strategies.

E. A/B Testing Deployments

While Canary Deployments focus mainly on minimizing
potential risks, by gradually releasing a new application ver-
sion under limited amounts of production traffic, A/B Testing
Deployments imply a completely different methodology, by
focusing on experimentation and optimisation, as stated in
a recent systematic literature review [19]. It is important to
highlight that A/B Testing is best suited for scenarios aimed at
optimizing user experience, performance, or business metrics
through experimentation. Unlike Canary Deployments, which
primarily verify stability and performance, A/B Testing aims
explicitly at choosing among competing feature implementa-
tions based on user behavior and engagement outcomes. While
both approaches involve routing a percentage of production
traffic to a different application version, A/B Testing trans-
forms the deployment process to a continuous experiment,
by conducting a simultaneous comparison between multiple

application versions. Whereas the primary goal of canary
deployments is to determine whether the new application build,
containing the intended code changes we need to deploy,
maintains acceptable system health and performance compared
to the baseline, which is considered the previous version
of the application, the goal of A/B Testing Deployments is
to identify, from a multitude of different versions of the
application, the one that yields the best results, which typically
refers to the most favorable user behavior and engagement
metrics.

A simple implementation for A/B Testing Deployments,
using AWS available resources, can be achieved using:

e An Auto Scaling Group attached to a Target Group for
each version of the application;

o An Application Load Balancer that routes equal percent-
ages of traffic to each Target Group;

o Optionally, it is a good practice to ensure that a user will
get routed to the same application version every time.
This can be done using sticky sessions with Load Bal-
ancer cookies®. Using this configuration, on a subsequent
request, as long as the user’s agent (i.e. browser) sends
the cookie, the Application Load Balancer will route the
request to the same Target Group, enabling the user to
always get the same version of the application.

More intelligent approaches can be used, such as using
Route53 header-based geographic routing*, to ensure users
from the same regions will get the same version of the
application. As concluded by a research paper on A/B testing
frameworks used for software feature releases at scale [20],
advanced A/B Testing, such as adaptive algorithms and intel-
ligent traffic allocation, can deliver better results, in the terms
of faster and reliable rollouts of new feature to the users, but
they also introduce significant infrastructure complexity, and
operational overhead, which may be unsustainable for smaller
organizations.

F. Shadow Deployments (Dark Launches)

Shadow Deployments, or Dark Launches, involve deploying
a new application version alongside the current production
version but without exposing it directly to end-users. Real
production traffic is duplicated and sent to the new, shadow
version, which processes requests and generates responses.
These shadow responses are discarded, meaning users ex-
perience no changes or interruptions. This technique allows
extensive risk-free testing under actual production conditions.

Implementing shadow deployments can prove to be particu-
larly challenging due to the inherent overhead. This approach
requires a complete duplicate of the production environment,
which will serve the mirrored traffic, leading to significantly
higher infrastructure costs. Shadow environments should not
write to the shared production databases, requiring separate
databases or sandboxed resources. The most important aspect

3https://docs.aws.amazon.com/prescriptive-guidance/latest/load-balancer-
stickiness/alb-cookies-stickiness.html

“https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-
patterns/api-routing-http.html

is that the application must implement idempotency of op-
erations, ensuring that repeated or duplicate requests, from
the mirrored traffic, will have the same effect as a single
request. Any integration with a downstream service or external
service should be isolated from the production environment or
redirected to test environments. This needs to be done in order
to prevent unintended side effects, such as data alterations,
duplicate transactions or message dispatching. Common tech-
niques to achieve such isolation include service virtualization,
which simulates the behavior of dependent services, and the
use of mock endpoints that safely emulate external APIs
without impacting production systems.

Duplicating or mirroring traffic to the shadow environment
can be accomplished using available built-in AWS resources
and technologies, such as using Lambda@Edge and the Ap-
plication Load Balancer’s request mirroring, as suggested in
an article written by Timothy Patterson [21], or by using the
traffic mirroring feature of the VPC(i.e. Amazon Virtual Pri-
vate Cloud)’, which allows network packets to be duplicated
and sent to the shadow environment.

Using this complex deployment strategy, the live and the
shadow application versions run alongside in production, but
the new features are kept in the dark, as the name dark
launches suggests, being tested and monitored in production
without revealing them to the user. In a research paper on
the continuous deployment techniques used at Facebook [22],
Tony Savor et al. offer a solution to the overhead associated
with adding a specific shadow environment, the code changes
that we want to dark launch are deployed on all production
servers, but configured in a certain way that end users cannot
interact with them, allowing to test for performance and scal-
ability issues. A specific example of such an implementation
of testing a new feature using dark launches is described
in the paper “Development and Deployment at Facebook”
[23]. When initially releasing their chat servers, Facebook
deployed the feature with its user interface disabled, while
the system itself was active and configured to send automated
test messages. This approach enabled Facebook to evaluate
the system’s stability under real production traffic and address
scalability challenges before public release. Once the system
was validated and optimized, it was exposed to users simply
by enabling the interface and disabling the test message
functionality.

III. EVALUATION FRAMEWORK FOR DEPLOYMENT
STRATEGIES

Selecting a deployment strategy requires a clear understand-
ing of available technologies, operational implications, and
the specific business needs of each application. To support
objective assessments, we evaluate deployment strategies using
the following six key criteria, ensuring that each is considered
consistently and explicitly across options:

Shttps://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-
mirroring.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/load-balancer-stickiness/alb-cookies-stickiness.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/load-balancer-stickiness/alb-cookies-stickiness.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/api-routing-http.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/api-routing-http.html
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html

o Deployment Speed/Duration: Time required to fully de-
ploy to production, measured from the start of the rollout
until all users are served by the new application version.

o Downtime: Anticipated interruption or service unavail-
ability during deployment.

o Risk Level: Probability of incidents or failures related to
the deployment.

« Rollback Speed: Ease and speed of reverting to a previous
stable version.

o Infrastructure Cost: Additional resources required for the
implementation of the strategy.

¢ Operational Complexity: Effort needed for setup, automa-
tion, and ongoing management.

While establishing clear evaluation criteria is an important
step in building an evaluation framework for deployment
strategies, selecting an appropriate measurement system is
equally critical. During our research for an intuitive scale with
universal understanding, we found out that traditional numeric
approaches can often create a false sense of precision, ulti-
mately obscuring meaningful distinctions between the options
we wish to evaluate, as teams struggle to discern the difference
between, for example, a complexity ranking of seven and an
eight. Moreover, absolute measurement systems often suffer
from calibration inconsistencies, making it difficult to integrate
new options into existing assessments. A research paper by
Sidky and Gaafar [24] comes to the conclusion that humans
are significantly better at making relative comparisons than at
scoring based on absolute estimates, further highlighting that
relative estimation enhances overall accuracy.

To address these concerns, this paper adopts the t-shirt
sizing® methodology as the measurement system for evaluating
deployment strategies, due to its intuitive, relative comparison
scale, balancing simplicity with detailed and unique charac-
teristics [25]. In Table I, we present a comparative evaluation
of the deployment strategies described above as part of this
paper, by analysing each deployment technique based on
multiple key factors (deployment speed, downtime, risk level,
rollback speed, infrastructure cost, and complexity), to support
objective selection based on relative trade-offs and specific
advantages.

IV. CONCLUSIONS

Selecting the most suitable deployment strategy always
depends on specific contextual factors. Security strategies
within cloud deployment architectures often intersect with
graph-based privacy concerns, as explored by Costea et al.
[26] in their analysis of differential privacy mechanisms on
graph structures. For critical production services with strict
availability requirements, safer zero-downtime strategies like
Canary, A/B Testing, or Shadow Deployments provide robust
mechanisms to manage risk, isolate changes, and enable rapid
rollbacks. These benefits typically come with higher complex-
ity and infrastructure costs, but significantly reduce operational
risks. In contrast, smaller or internal services that can tolerate

Shttps://asana.com/resources/t-shirt-sizing

3)
zb @Q\}& N ‘0‘)& X Q\d?
¥ N o » & &

Strategy K 9 < < O O
All-at-Once L XL XL XS S XS
Recreate M XL XL XS S S
Rolling M M L S S XS
Immutable M M L S M S
Blue-Green XL M M L L M
Canary S S S M L L
A/B S S S XL XL XL
Shadow S XS XS XL XL XL

Legend: X=Extra, S=Small, M=Medium, L=Large.

TABLE I: Comparison of Deployment Strategies Based on
Operational Criteria (T-Shirt Sizing)

scheduled downtime or occasional deployment risks might
prefer simpler, lower-cost options like Rolling Deployments,
which require less automation effort.

To illustrate the practical utility of the proposed evalua-
tion framework, consider a high-traffic e-commerce platform
preparing to launch a new payment feature. The engineer-
ing team must choose between a Canary deployment and a
Blue-Green deployment. Consulting the t-shirt sizing evalua-
tion table, the team notes that:

o Canary deployment is ranked as S for speed, S for down-
time, S for risk, M for rollback speed, L for infrastructure
cost, and L for complexity.

o Blue-Green deployment is ranked as XL for speed, M for
downtime, M for risk, L for rollback speed, L for cost,
and M for complexity.

From these ratings, the team can quickly see that Canary
offers lower downtime and risk (both S) while maintaining
moderate rollback agility (M), though at a higher infrastructure
cost and complexity (L, L) compared to some other strategies.
Blue-Green, on the other hand, delivers the fastest rollout (XL)
with easy rollback (L), but it comes with moderately higher
downtime and risk (M, M) and similar infrastructure cost (L).
Using these concise t-shirt size metrics, the team can weigh the
trade-offs: Canary may be preferable if minimizing operational
risk is the top priority, whereas Blue-Green is the stronger
choice if deployment speed and rollback simplicity are more
important for the business context.

Moreover, many organizations combine multiple deploy-
ment strategies to capitalize on each method’s strengths and
mitigate risks. In practice, a common industry pattern is to
implement a Canary release within a Blue-Green infrastruc-
ture: new changes are first deployed to a parallel (“green”)
environment, and traffic is gradually shifted to the new version
using canary analysis. This approach enables teams to validate
new releases with a subset of users in the green environment,
providing early feedback and risk mitigation, before perform-
ing a complete switchover for all users if the canary phase is
successful. Such hybrid strategies allow for both rapid, easily
reversible rollouts and incremental user exposure, maximizing
reliability while maintaining agility.

https://asana.com/resources/t-shirt-sizing

Ultimately, in today’s competitive landscape, selecting a
deployment strategy requires effective change management
planning and a careful balance of factors such as speed,
reliability, complexity, and cost. By applying the t-shirt siz-
ing evaluation framework, shown in Table I, businesses and
individuals can compare deployment strategies and select the
one that best fits their specific use case.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

Edge Delta. (2024, Jun.) How many companies use cloud computing
in 20257 [10 statistics and insights]. Accessed: 2025-07-11. [Online].
Available: https://edgedelta.com/company/blog/how-many-companies-u
se-cloud-computing

Gartner. (2024, May) Gartner forecasts worldwide public cloud end-
user spending to surpass $675 billion in 2024. Accessed: 2025-07-11.
[Online]. Available: https://www.gartner.com/en/newsroom/press-relea
ses/2024-05-20- gartner- forecasts- worldwide- public-cloud-end-user-s
pending-to-surpass-675-billion-in-2024

Google Cloud. (2024, Jun.) Incident 24006: Issue with google cloud
infrastructure in us-east5. Accessed: 2025-07-20. [Online]. Available:
https://status.cloud.google.com/incidents/owS5i3PPK96RduMcb1SsW
Ookla. (2025, Jun.) Major google cloud outage impacts online
services around the globe. Accessed: 2025-07-18. [Online]. Available:
https://www.ookla.com/articles/google-cloud-outage-june-2025

N. Popper. (2012, Aug.) Knight capital says trading mishap
cost it $440 million. Accessed: 2025-07-18. [Online]. Available:
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-c
apital-says-trading-mishap- cost-it-440-million/

I. Aldea, “Understanding software failures through incident report
analysis: An empirical study of 348 incident reports from the void,”
Master’s thesis, Delft University of Technology, 2025. [Online].
Available: https://repository.tudelft.nl/record/uuid:e8da60fe-3db0-4a0
2-ac2f-5c7b285% 7ee

S. Ghosh, M. Shetty, C. Bansal, and S. Nath, “How to fight production
incidents?: An empirical study on a large-scale cloud service,” in
Proceedings of the 13th ACM Symposium on Cloud Computing (SoCC
’22). New York, NY, USA: ACM, Nov. 2022, pp. 40-53. [Online].
Available: https://doi.org/10.1145/3542929.3563482

K. S. Yim, “Norming to performing: Failure analysis and deployment
automation of big data software developed by highly iterative models,”
in IEEE International Symposium on Software Reliability Engineering,
2014, pp. 144-155.

A. Alexandrescu and C. Mironeanu, “A framework for anything-as-a-
service on a cloud platform,” in 2023 27th International Conference on
System Theory, Control and Computing (ICSTCC), 2023, pp. 333-338.
0. Agapie, A. Alexandrescu, and D. Turcanu, “Cloud-based distributed
solution for optimizing the search for tourist destinations,” in 2024
23rd RoEduNet Conference: Networking in Education and Research
(RoEduNet), 2024, pp. 1-6.

C. Contasel, R. V. Rughinis, D. C. Trancd, and D. Tsurcanu, “Enhanc-
ing e-health cybersecurity and resilience: shifting from monolithic to
microservices architecture,” U.P.B. Scientific Bulletin, Series C, vol. 87,
no. 1, pp. 21-34, 2025.

A. Radovici, L. Culic, D. Rosner, and F. Oprea, “A model for the remote
deployment, update, and safe recovery for commercial sensor-based iot
systems,” Sensors, vol. 20, no. 16, p. 4393, Aug. 2020.

I. M. Stan, D. Rosner, and S. D. Ciocirlan, “Enforce a global security
policy for user access to clustered container systems via user namespace
sharing,” in 2020 19th RoEduNet Conference: Networking in Education
and Research (RoEduNet), 2020, pp. 1-6.

C. K. Rudrabhatla, “Comparison of zero downtime based deployment
techniques in public cloud infrastructure,” in 2020 Fourth International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
(I-SMAC), 2020, pp. 1082-1086.

B. Yang, A. Sailer, and A. Mohindra, “Survey and evaluation of blue-
green deployment techniques in cloud native environments,” in Service-
Oriented Computing — ICSOC 2019 Workshops, S. Yangui, A. Bouguet-
taya, X. Xue, N. Faci, W. Gaaloul, Q. Yu, Z. Zhou, N. Hernandez, and
E. Y. Nakagawa, Eds. Cham: Springer International Publishing, 2020,
pp. 69-81.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Amazon Web Services, “Blue/green deployments on aws,” https://docs
.aws.amazon.com/whitepapers/latest/blue- green-deployments/introduct
ivon.html, Sep. 2021, accessed: 2025-07-18.

Stépan Davidovi¢, B. Beyer, N. Desai, and L. Zhang, “Canary
analysis service: Automated canarying quickens development, improves
production safety, and helps prevent outages,” Queue, vol. 16, no. 6,
pp- 20-39, Jun. 2018. [Online]. Available: https://dl.acm.org/doi/10.11
45/3194653.3194655

A. Singh and V. Mansotra, “A comparison on continuous integration
and continuous deployment (ci/cd) on cloud based on various
deployment and testing strategies,” International Journal for Research
in Applied Science & Engineering Technology (IJRASET), vol. 9,
no. VI, pp. 4968-4973, Jun. 2021. [Online]. Available: https:
/Iwww.ijraset.com/fileserve.php?FID=36038

F. Quin, D. Weyns, M. Galster, and C. C. Silva, “A/b testing: A
systematic literature review,” Journal of Systems and Software, vol.
211, p. 112011, 2024. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121224000542

G. Anand, S. K. Lingishetty, and N. Gupta, “Large-scale a/b testing
frameworks for improving software feature rollouts,” International
Journal of Creative Research Thoughts (IJCRT), vol. 13, no. 3, 2025,
open Access, Peer-reviewed, Refereed Journal. [Online]. Available:
https://ijcrt.org

T. Patterson. (2025) Shadow deployments on aws part 1: Lambda@edge.
Accessed: 2025-07-19. [Online]. Available: https://cloudy.dev/article/s
hadow-deployments/

T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
“Continuous deployment at facebook and oanda,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C). Austin, TX, USA: IEEE, 2016, pp. 21-30.

D. Feitelson, E. Frachtenberg, and K. Beck, “Development and deploy-
ment at facebook,” Internet Computing, IEEE, vol. 17, pp. 8-17, 07
2013.

A. Sidky and A. Gaafar, “The mindset behind estimating and planning
for agile,” in PMI Global Congress 2014—EMEA, Project Management
Institute. Dubai, United Arab Emirates: Project Management Institute,
2014, paper presented at PMI Global Congress 2014-EMEA, Newtown
Square, PA.

Teamhub. (2024) Understanding relative sizing in software development:
A comprehensive overview. Accessed: 2025-07-19. [Online]. Available:
https://teamhub.com/blog/understanding-relative-sizing-in-software-dev
elopment-a-comprehensive-overview/

S. Costea, M. Barbu, and R. Rughinis, “Qualitative analysis of differ-
ential privacy applied over graph structures,” in 2013 11th RoEduNet
International Conference, 2013, pp. 1-4.

https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://www.gartner.com/en/newsroom/press-releases/2024-05-20-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-surpass-675-billion-in-2024
https://www.gartner.com/en/newsroom/press-releases/2024-05-20-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-surpass-675-billion-in-2024
https://www.gartner.com/en/newsroom/press-releases/2024-05-20-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-surpass-675-billion-in-2024
https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW
https://www.ookla.com/articles/google-cloud-outage-june-2025
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://repository.tudelft.nl/record/uuid:e8da60fe-3db0-4a02-ac2f-5c7b2859f7ee
https://repository.tudelft.nl/record/uuid:e8da60fe-3db0-4a02-ac2f-5c7b2859f7ee
https://doi.org/10.1145/3542929.3563482
https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/introduction.html
https://dl.acm.org/doi/10.1145/3194653.3194655
https://dl.acm.org/doi/10.1145/3194653.3194655
https://www.ijraset.com/fileserve.php?FID=36038
https://www.ijraset.com/fileserve.php?FID=36038
https://www.sciencedirect.com/science/article/pii/S0164121224000542
https://www.sciencedirect.com/science/article/pii/S0164121224000542
https://ijcrt.org
https://cloudy.dev/article/shadow-deployments/
https://cloudy.dev/article/shadow-deployments/
https://teamhub.com/blog/understanding-relative-sizing-in-software-development-a-comprehensive-overview/
https://teamhub.com/blog/understanding-relative-sizing-in-software-development-a-comprehensive-overview/

	Introduction
	Software Deployment Strategies
	All-At-Once Deployments (Big-Bang Deployments)
	Rolling Deployments
	Blue-Green Deployments
	Canary Deployments
	A/B Testing Deployments
	Shadow Deployments (Dark Launches)

	Evaluation Framework for Deployment Strategies
	Conclusions
	References

